
Indiana University Bloomington – Celebration of Teaching 2024

Methods

References

Acknowledgements

ImplementationAbstract

Introduction

Example assignment: Modeling curves and surfaces
• Implementing spline equations in C# scripts, with input control points

from Unity scene editor hierarchy.

• Curve modeling algorithms are then reimplemented in GPU shaders.

High-level to Low-level of Abstraction:
Teaching Computer Graphics and GPU Programming with a Game Engine

Mitja Hmeljak
Computer Science, Indiana University

mitja@iu.edu

• Holly Zhang(*) co-author in SIGCSE 2020 and ITiCSE 2020

• Rajin Shankar(*) implemented the first redesign of course
assignments in Unity

• (*) both completed CSCI-B481 in Spring 2018 (when it was still based on OpenGL ES)

• Thanks to students taking Indiana University CSCI-B481 & B581,
for their feedback and suggestions

[1] Edward Angel and Dave Shreiner. 2012.
Interactive computer graphics : a top-down approach with shader-based OpenGL (6th
ed.). Addison-Wesley, Boston, MA.

[2] Mitja Hmeljak and Holly Zhang, 2020.
Developing a Computer Graphics Course with a Game Development Engine.
In Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education (Trondheim, Norway) (ITiCSE '20). ACM, New York, NY,
USA, 75–81. https://doi.org/10.1145/3341525.3387428

[3] James R. Miller. 2014.
Using a Software Framework to Enhance Online Teaching of Shader-based OpenGL.
In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (Atlanta, Georgia, USA) (SIGCSE ’14). ACM, New York, NY, USA, 603–608.
https://doi.org/10.1145/2538862.2538892

[4] Gregory Smith and Kelvin Sung. 2019.
Teaching Computer Graphics Based on a Commercial Product.
In Eurographics 2019 - Education Papers, Marco Tarini and Eric
Galin(Eds.).TheEurographicsAssociation. https://doi.org/10.2312/eged.20191031

[5] Jacqueline Whalley. 2020.
Critical Perspectives: The Shaders-First Debate.
ACM Inroads 11, 3 (Aug. 2020), 6–8. https://doi.org/10.1145/3410477

[6] Ursula Wolz, Gail Carmichael, and Chris Dunne. 2020.
Learning to Code in the Unity 3D Development Platform.
In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery,
New York, NY, USA, 1387. https://doi. org/10.1145/3328778.3367010

• The complex setup that would be required by graphics
APIs is provided by Unity's built-in interface to GPU
shaders, while maintaining a higher level of abstraction in
the Unity scene editor.

• By reimplementing details of the same algorithms in GPU
shaders, students gain practice with parallel processing
and lower-level GPU programming.

Real-time rendering of Computer Graphics algorithms is achieved through
shaders, i.e. programs that run on GPUs (Graphics Processing Unit), for the
parallel processing of vertices, fragmentsàpixels, etc.

Modern graphics APIs (Application Programming Interface) provide efficient
access to GPU-based processing, but require a complex setup that
represent a high entry barrier to students.

In designing an introductory Computer Graphics course, the debate is
often about choosing between a top-down approach relying on fixed
graphics pipeline functionalities, or whether to start by teaching GPU
shader programming first.

This poster presents a set of Computer Graphics assignments that include
both CPU-based and GPU-based implementations in the Unity game
development engine.

Selected algorithms are shown first in the form of C# scripts that interface
with the Unity scene editor, at a higher level of abstraction. The same
concepts are subsequently revisited with the introduction of parallel
processing and GPU programming concepts, by leveraging Unity's built-in
interface to lower-level GPU shaders.

Computer Graphics instructors face a dilemma, when designing
an introductory Computer Graphics course:

• whether to take a top-down approach, presenting higher
level concepts by relying on fixed graphics pipeline
functionalities;

• or to start by teaching GPU shader programming first, thus
also allowing for a more direct experience of current
graphics APIs.

The question is especially relevant in degree programs that don't
provide multiple Computer Graphics courses [5].

The amount of preparatory work that is required for writing
GPU shader programs may be lessened by providing a software
framework specific to the introductory Computer Graphics
course [3]. Some textbooks provide a software library to allow
most of the coursework to be implemented in GPU shaders [1].
Game development engines such as Unity are used in game
development courses, as well as in introductory programming
courses[6].

More recently, entire computer graphics courses have been
redesigned to implement their coursework using Unity [2] [4].

In designing an introductory Computer Graphics course,
• taking a top-down approach,
• presenting higher level concepts first,
• by relying on fixed graphics pipeline functionalities:

"Fixed pipeline": teaching Computer
Graphics with a Top-Down Approach

modeling
transformation

viewing
transformation

projection
transformation etc.

In designing an introductory Computer Graphics
course,
• start by teaching GPU shader programming,
• thus also allowing for a more direct experience

of current graphics APIs
• (may have to start with a simpler version of the

programmable pipeline)

"Shaders first" approach:
start by teaching GPU Shader Programming

vertex shader rasterization fragment shader

High-level to Low-level approach, with a Game
Development Engine – assignments will include both:
• CPU-based implementations, and
• GPU-based implementations,
within Game Development Engine (e.g. Unity) runtime.

A different approach:
use a Game Development Engine in a

Computer Science course

Assignments in Unity that include
both CPU- and GPU-based implementations

Affine transformations and coordinate spaces
• first, transformations from object coordinates to world

coordinates are implemented in the form of C# scripts
that interface with the Unity scene editor.

• then, the same set of transformations is to be
implemented in a GPU vertex shader.

Each assignment introduces a specific
concept or algorithm, for example:

