Abstract

Real-time rendering of Computer Graphics algorithms is achieved through
shaders, i.e. programs that run on GPUs (Graphics Processing Unit), for the
parallel processing of vertices, fragments—> pixels, etc.

Modern graphics APIs (Application Programming Interface) provide efficient
access to GPU-based processing, but require a complex setup that
represent a high entry barrier to students.

In designing an introductory Computer Graphics course, the debate is
often about choosing between a top-down approach relying on fixed
graphics pipeline functionalities, or whether to start by teaching GPU
shader programming first.

This poster presents a set of Computer Graphics assignments that include
both CPU-based and GPU-based implementations in the Unity game
development engine.

Selected algorithms are shown first in the form of C# scripts that interface
with the Unity scene editor, at a higher level of abstraction. The same
concepts are subsequently revisited with the introduction of parallel
processing and GPU programming concepts, by leveraging Unity's built-in
interface to lower-level GPU shaders.

Introduction

Computer Graphics instructors face a dilemma, when designing
an introductory Computer Graphics course:

* whether to take a top-down approach, presenting higher
level concepts by relying on fixed graphics pipeline
functionalities;

or to start by teaching GPU shader programming first, thus
also allowing for a more direct experience of current
graphics APls.

The question is especially relevant in degree programs that don't
provide multiple Computer Graphics courses [5].

The amount of preparatory work that is required for writing
GPU shader programs may be lessened by providing a software
framework specific to the introductory Computer Graphics
course [3]. Some textbooks provide a software library to allow
most of the coursework to be implemented in GPU shaders [1].
Game development engines such as Unity are used in game
development courses, as well as in introductory programming
courses|[6].

More recently, entire computer graphics courses have been
redesigned to implement their coursework using Unity [2] [4].

LUDDY

High-level to Low-level of Abstraction:
Teaching Computer Graphics and GPU Programming with a Game Engine

"Fixed pipeline": teaching Computer
Graphics with a Top-Down Approach

In designing an introductory Computer Graphics course,

0 taking a top-down approach,

. presenting higher level concepts first,

. by relying on fixed graphics pipeline functionalities:
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"Shaders first" approach:
start by teaching GPU Shader Programming

In designing an introductory Computer Graphics
course,
start by teaching GPU shader programming,
thus also allowing for a more direct experience
of current graphics APls
(may have to start with a simpler version of the
programmable pipeline)
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A different approach:
use a Game Development Engine in a
Computer Science course

High-level to Low-level approach, with a Game
Development Engine — assignments will include both:

. CPU-based implementations, and

. GPU-based implementations,

within Game Development Engine (e.g. Unity) runtime.

Each assignment introduces a specific
concept or algorithm, for example:

Affine transformations and coordinate spaces

* first, transformations from object coordinates to world
coordinates are implemented in the form of C# scripts
that interface with the Unity scene editor.

e then, the same set of transformations is to be
implemented in a GPU vertex shader.
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Methods

Assignments in Unity that include
both CPU- and GPU-based implementations

Example assignment: Modeling curves and surfaces

* Implementing spline equations in C# scripts, with input control points
from Unity scene editor hierarchy.

Curve modeling algorithms are then reimplemented in GPU shaders.

for (int 1 = 0; 1 < verticesOnCurve; i++) {
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float t1 = (float)i / (float)(verticesOnCurve - 1);

imet ertices TTset splin

float t2 = (float)i / (float)(verticesOnCurve - 1);

. 5 0N DC » SplLl
vertices[Z2 * i].x = t1;
vertices[2 * i].y = 0;

y wy & > 0N OTTSET SpLine curwv
vertices[Z2 * 1 + 1].x = t2;
vertices[Z * 1 + 1].y = splineWidth;

if (1 < verticesOnCurve - 1) {

triangle with 1
triangles[6 * i] = 2
triangles[6 * i + 1]
triangles[6 * i + 2]
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}

mesh = new Mesh();
mesh.vertices = vertices;
mesh.triangles = triangles;
meshFilter.mesh = mesh;
meshRenderer.sortingLayerNal()
meshRenderer.sortingOrder =
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Yprivate void Update() {
update number of points on spline curve:
if (splineCurve.positionCount != curvePoints) {
splineCurve.positionCount = curvePoints;

set, the smoother the curve will be
°eFie1d] private int curvePoints = 16;

}
get the correct matrix of spline
(e.g. for the Bezier spline matrix, as per Textbook Chapter 11.6.
Matrix4x4 splineMatrix = SplineParameters.GetMatrix(splineType);
nd now compute the spline curve, point by point:
for (int 1 = 0; 1 < curvePoints; i++) {
float u = (float)i / (float)(curvePoints - 1);
ou have to define the u vector, a 4
(defined as in textbook Chapter 11.3 in the 7th ec
...here, but always keep 1t
Unity stores matrices in the Matrix4x4 data type
stated 1n the or n

element vector...
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(4 fanally, compute the splinePointPosition as from the Hermite Form

/ the spline equation calculation happens here, i.e.:

’/ you need to compute the spline multiplication as from the matrix form
/ as per Problem Set @3 instructions,

'/ in the form p(u) = uT * M * p

Note: matrices are defined in "column major" !

NoteZ2: here we name the parameter t instead of u

loat4 HermiteMult(float4x4 controlP, float4x4 splineM, float4 tParamsVector) {
// TODO compute vertex on curve TODO:

// first, multiply control points and spline matrix
// then, use the result to compute vertex on curve, from control parameter vector
return vertexOnCurve;

} // end of HermiteMult()

// compute the Normal to the curve, at vertex provided by parameter t:
7/
float2 GetNormalToCurve(float t, float dt, float4x4 controlMatrix, float4x4 splineMatrix) {

// TODO compute normal to segment (pl, p2) on curve
where pl is the vertex on curve at parameter t
where p2 is the vertex on curve at parameter t2 = t + dt

// ADDITIONAL NOTE:
/ The resulting normal should be normalized before returning it!
And the returned value should be a float2 (not a float4!)

A /
// DONE:

/ first, prepare two control parameter vectors:

/ one for pl, the other for p2

'/ then, call HermiteMult() to compute two points pl and p2

'/ finally, compute normal direction vector to segment (pl, p2)

/ ...don't forget to normalize the normal, before returning it.

“offset curve”

return normal;
W7/ end of GetNormalToCurve()
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Implementation

The complex setup that would be required by graphics
APIs is provided by Unity's built-in interface to GPU
shaders, while maintaining a higher level of abstraction in
the Unity scene editor.

By reimplementing details of the same algorithms in GPU
shaders, students gain practice with parallel processing
and lower-level GPU programming.
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