Abstract

Real-time rendering of Computer Graphics algorithms is achieved through
shaders, i.e. programs that run on GPUs (Graphics Processing Unit), for the
parallel processing of vertices, fragments—> pixels, etc.

Modern graphics APIs (Application Programming Interface) provide efficient
access to GPU-based processing, but require a complex setup that
represent a high entry barrier to students.

In designing an introductory Computer Graphics course, the debate is
often about choosing between a top-down approach relying on fixed
graphics pipeline functionalities, or whether to start by teaching GPU
shader programming first.

This poster presents a set of Computer Graphics assignments that include
both CPU-based and GPU-based implementations in the Unity game
development engine.

Selected algorithms are shown first in the form of C# scripts that interface
with the Unity scene editor, at a higher level of abstraction. The same
concepts are subsequently revisited with the introduction of parallel
processing and GPU programming concepts, by leveraging Unity's built-in
interface to lower-level GPU shaders.

Introduction

Computer Graphics instructors face a dilemma, when designing
an introductory Computer Graphics course:

* whether to take a top-down approach, presenting higher
level concepts by relying on fixed graphics pipeline
functionalities;

or to start by teaching GPU shader programming first, thus
also allowing for a more direct experience of current
graphics APls.

The question is especially relevant in degree programs that don't
provide multiple Computer Graphics courses [5].

The amount of preparatory work that is required for writing
GPU shader programs may be lessened by providing a software
framework specific to the introductory Computer Graphics
course [3]. Some textbooks provide a software library to allow
most of the coursework to be implemented in GPU shaders [1].
Game development engines such as Unity are used in game
development courses, as well as in introductory programming
courses|[6].

More recently, entire computer graphics courses have been
redesigned to implement their coursework using Unity [2] [4].

LUDDY

High-level to Low-level of Abstraction:
Teaching Computer Graphics and GPU Programming with a Game Engine

"Fixed pipeline": teaching Computer
Graphics with a Top-Down Approach

In designing an introductory Computer Graphics course,

0 taking a top-down approach,

. presenting higher level concepts first,

. by relying on fixed graphics pipeline functionalities:

modeling 9

projection
transformation 9

transformation

viewing e>

. etc.
transformation

"Shaders first" approach:
start by teaching GPU Shader Programming

In designing an introductory Computer Graphics
course,
start by teaching GPU shader programming,
thus also allowing for a more direct experience
of current graphics APls
(may have to start with a simpler version of the
programmable pipeline)

9 vertex shader 9

fragment shader 9

rasterization >

A different approach:
use a Game Development Engine in a
Computer Science course

High-level to Low-level approach, with a Game
Development Engine — assignments will include both:

. CPU-based implementations, and

. GPU-based implementations,

within Game Development Engine (e.g. Unity) runtime.

Each assignment introduces a specific
concept or algorithm, for example:

Affine transformations and coordinate spaces

* first, transformations from object coordinates to world
coordinates are implemented in the form of C# scripts
that interface with the Unity scene editor.

e then, the same set of transformations is to be
implemented in a GPU vertex shader.
[=Hierarchy |

Create ~| (oAl
v € sampleScene
| Main Camera
| Directional Light

v [) upperArm
v [) forearm
v () elbow
v [JupperkKnuckle
v [upperFingerBase
v) upperFingerJoint

-
© Inspector -
5-’ ¥ arm

Tag | untagged ¢ | Layer | Default 3)
Prefab Open | Select J verride J

L
using UnityEngine;) upperFingerTip
v | JlowerKnuckle

v |) lowerFingerBase

v | JlowerFingerJoint

) Static v public class MakeRobotArm : MonoBehaviour
{

£ . |) lowerFingerTip
v .. Transform [VEE
Position X0 Y 0 Zo0
Rotation x [0 Y0 74
Scale X1 Y1 Z[1

Script

¥ 4 ¥Move Arm (Script) "X]
MoveArm 2
o

Upper Arm Ref
Forearm Ref
Upper Finger Base Ri AupperFingerBase (Transform) @
Lower Finger Base Ri AlowerFingerBase (Transform) | ©
Upper Finger Tip Ref AupperFingerTip (Transform) | @
Lower Finger Tip Ref AlowerFingerTip (Transform) Lo}
Arm Ref Aarm (Transform) Q
(]
o

AupperArm (Transform)
A forearm (Transform) o}

Elbow Ref Aelbow (Transform)

Upper Knuckle Ref L upperkKnuckle (Transform)

Lower Knuckle Ref | Alowerknuckle (Transform) Q

Upper F!nger Jo?nt R¢ AupperflngerJolnt (Transform)| @ rearm. localPosition = new Vec X 9.5¢):

Lower Finger Joint R¢ A lowerFingerJoint (Transform) | © igi erBase. loc n = new Vector3((float)e.:

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Mitja Hmeljak

Computer Science, Indiana University

mitja@iu.edu

Methods

Assignments in Unity that include
both CPU- and GPU-based implementations

Example assignment: Modeling curves and surfaces

* Implementing spline equations in C# scripts, with input control points
from Unity scene editor hierarchy.

Curve modeling algorithms are then reimplemented in GPU shaders.

for (int 1 = 0; 1 < verticesOnCurve; i++) {

mete ertl1ce (ast pLLN¢ irve

float t1 = (float)i / (float)(verticesOnCurve - 1);

imet ertices TTset splin

float t2 = (float)i / (float)(verticesOnCurve - 1);

. 5 0N DC » SplLl
vertices[Z2 * i].x = t1;
vertices[2 * i].y = 0;

y wy & > 0N OTTSET SpLine curwv
vertices[Z2 * 1 + 1].x = t2;
vertices[Z * 1 + 1].y = splineWidth;

if (1 < verticesOnCurve - 1) {

triangle with 1
triangles[6 * i] = 2
triangles[6 * i + 1]
triangles[6 * i + 2]

t ngl

triangles[6 *
triangles[6
triangles[6

}

}

mesh = new Mesh();
mesh.vertices = vertices;
mesh.triangles = triangles;
meshFilter.mesh = mesh;
meshRenderer.sortingLayerNal()
meshRenderer.sortingOrder =

|

© Inspector o=

o Spline Segment Static ¥
-

Tag | Untagged # | Layer | Default

“base curve”

¥ .~ Transform (VK
Position X0 Yo zZ0
Rotation X0 YO Z0
Scale X1 Yil Z1

v - ¥ Spline Segment CPU Compute (Scripy W ' &
Script SplineSegmentCPUCompute o
Control 0 A P(0) (Transform) o
Control 1 AP(1) (Transform) o eParameters.SplineType type) { splineType = type; }
Control 2 LP(2) (Transform) o > SetType(SplineParameters.SplineType.Bezier);
Control 3 A PG3) (Transform) ° .E) =ZSS<13’FTyEe(Sp1inePa;aTgte;s.SpéiniTyps.CatmullRom);

, e ineParameters. ineType.Bspline);

Spline Type | Bezier N yp P o ‘ P yp P

Control Polyline + PolyLine (Line Renderer) o spline cury
Spline Curve v SplineCurve (Line Renderer)
Curve Points Q 16
Yprivate void Update() {
update number of points on spline curve:
if (splineCurve.positionCount != curvePoints) {
splineCurve.positionCount = curvePoints;

set, the smoother the curve will be
°eFie1d] private int curvePoints = 16;

}
get the correct matrix of spline
(e.g. for the Bezier spline matrix, as per Textbook Chapter 11.6.
Matrix4x4 splineMatrix = SplineParameters.GetMatrix(splineType);
nd now compute the spline curve, point by point:
for (int 1 = 0; 1 < curvePoints; i++) {
float u = (float)i / (float)(curvePoints - 1);
ou have to define the u vector, a 4
(defined as in textbook Chapter 11.3 in the 7th ec
...here, but always keep 1t
Unity stores matrices in the Matrix4x4 data type
stated 1n the or n

element vector...

nind that:

I
Vector4(TOIL

I

I

(4 fanally, compute the splinePointPosition as from the Hermite Form

/ the spline equation calculation happens here, i.e.:

’/ you need to compute the spline multiplication as from the matrix form
/ as per Problem Set @3 instructions,

'/ in the form p(u) = uT * M * p

Note: matrices are defined in "column major" !

NoteZ2: here we name the parameter t instead of u

loat4 HermiteMult(float4x4 controlP, float4x4 splineM, float4 tParamsVector) {
// TODO compute vertex on curve TODO:

// first, multiply control points and spline matrix
// then, use the result to compute vertex on curve, from control parameter vector
return vertexOnCurve;

} // end of HermiteMult()

// compute the Normal to the curve, at vertex provided by parameter t:
7/
float2 GetNormalToCurve(float t, float dt, float4x4 controlMatrix, float4x4 splineMatrix) {

// TODO compute normal to segment (pl, p2) on curve
where pl is the vertex on curve at parameter t
where p2 is the vertex on curve at parameter t2 = t + dt

// ADDITIONAL NOTE:
/ The resulting normal should be normalized before returning it!
And the returned value should be a float2 (not a float4!)

A /
// DONE:

/ first, prepare two control parameter vectors:

/ one for pl, the other for p2

'/ then, call HermiteMult() to compute two points pl and p2

'/ finally, compute normal direction vector to segment (pl, p2)

/ ...don't forget to normalize the normal, before returning it.

“offset curve”

return normal;
W7/ end of GetNormalToCurve()

Indiana University Bloomington

[3]

[5]

[6]

Implementation

The complex setup that would be required by graphics
APIs is provided by Unity's built-in interface to GPU
shaders, while maintaining a higher level of abstraction in
the Unity scene editor.

By reimplementing details of the same algorithms in GPU
shaders, students gain practice with parallel processing
and lower-level GPU programming.

References

Edward Angel and Dave Shreiner. 2012.
Interactive computer graphics : a top-down approach with shader-based OpenGL (6th
ed.). Addison-Wesley, Boston, MA.

Mitja Hmeljak and Holly Zhang, 2020.

Developing a Computer Graphics Course with a Game Development Engine.

In Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education (Trondheim, Norway) (ITiCSE '20). ACM, New York, NY,
USA, 75-81. https://doi.org/10.1145/3341525.3387428

James R. Miller. 2014.

Using a Software Framework to Enhance Online Teaching of Shader-based OpenGL.
In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (Atlanta, Georgia, USA) (SIGCSE ’14). ACM, New York, NY, USA, 603—-608.
https://doi.org/10.1145/2538862.2538892

Gregory Smith and Kelvin Sung.2019.

Teaching Computer Graphics Based on a Commercial Product.

In Eurographics 2019 - Education Papers, Marco Tarini and Eric
Galin(Eds.).TheEurographicsAssociation. https://doi.org/10.2312/eged.2019103 |

Jacqueline Whalley. 2020.
Critical Perspectives: The Shaders-First Debate.
ACM Inroads |1, 3 (Aug. 2020), 6-8. https://doi.org/10.1145/3410477

Ursula Wolz, Gail Carmichael, and Chris Dunne. 2020.
Learning to Code in the Unity 3D Development Platform.

In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (Portland, OR, USA) (SIGCSE ’20).Association for Computing Machinery,
New York, NY, USA, 1387. https://doi. org/10.1145/3328778.3367010

Acknowledgements

Holly Zhang(*) co-author in SIGCSE 2020 and ITiCSE 2020

Rajin Shankar(*) implemented the first redesign of course
assignments in Unity
(*) both completed CSCI-B481 in Spring 2018 (when it was still based on OpenGL ES)

Thanks to students taking Indiana University CSCI-B48| & B581,
for their feedback and suggestions

— Celebration of Teaching 2024

