
How to Design Loops
Joshua Crotts 1 Chung-chieh Shan 1 Sam Tobin-Hochstadt 1

1Indiana University Bloomington

Abstract

Loops in programming languages are difficult for beginning students to construct
correctly. At their core, the idea is simple: repeat a given task until a condition is
falsified. Loops, however, have multiple possible points of failure and opportunities
for mistakes.
Thus, we introduce a step-by-step process for loop construction that beginning pro-
gramming students can follow. Our approach begins with a recursive function, and
provides a translation pipeline resulting in a correct loop implementation.
We focus on students who have prior experience with recursive functions, since this
provides additional challenges for teaching loops.
We perform an evaluative study on students from the CS1 and CS2 population to test
our methodology against the traditional approach to teaching loops in our CS2-level
course.
Our results indicate that our translation pipeline method improves students’ success
in writing loops.

Introduction and Research Questions

Students learn how to write loops in many computer science classes, which often leads
to confusion for many reasons:

Figure 1. Sample Answer With Mistakes to Prompt, “Write a loop to
sum the even numbers from 1 to 10.”2

We propose such a scaffolded approach via a translation pipeline from a tail recursive
function to a loop, with the following research questions:

RQ1: Does the mechanical part of our translation pipeline method help students
that already understand recursion and conditionals to learn to write loops?

RQ2: Why is our proposed method to teach students that already understand re-
cursion and conditionals an improvement over the traditional pedagogy?

This answer is a reproduction of an amalgamation of multiple errors that many students make and
have made during instructor observation. It is not an authentic student solution.

Methods

There are 7 steps to the translation pipeline from tail recursion to loops:

1. Without worrying yet about using a loop, the student first designs a recursive func-
tion that solves the problem.

2. The student checks if the function just designed is tail recursive.
3. The student marks three pieces of information in the tail recursive function:

i.
:::::::
the

:::::::::::::
base

:::::::::::
case

::::::::::::::::::::::::::::::::
condition(s),

ii. the non-recursive return value(s),
iii. each updated parameter in a recursive call.

4. The student converts the accumulators into local variables at the top of the loop
definition. These are marked with iterative variable purpose statements.

5. The student writes the while keyword, followed by the logical negation of our
::::::::::
base

::::::::::
case

::::::::::::::::::::::::::
conditions via the ! operator.

6. The student turns updated parameters into assignment statements within the loop
body.

7. Lastly, the student adds a return statement to return each non-recursive return
value of the tail recursive function.

Problem
1 Recursive solution

2 Tail recursive solution
3

Highlighted pieces

4 Iterative variable(s)

5
::::::::::
Loop

:::::::::::::::::::::::::
condition(s)

6 Loop body

7 Return

Figure 2. General Translation Pipeline

Results

Figure 3. Pre-test vs Post-test Scores by Group

Participants were scored on a pre-defined rubric out of 2 points per test. All of the
experimental participants showed a sharp growth, whereas control participants showed
less.
Our preliminary translation pipeline results are promising, and we plan to further im-
prove either parts of the translation pipeline or the study design.

Empirical Evaluation

Participants were asked to take a pre-test on designing loops, read slide material,
then take a post-test to demonstrate growth.

· The experimental group received print-out slides of designing loops via the trans-
lation pipeline.

· The control group were instructed to read through a set of slides about loops from
a popular introductory Java programming textbook.

Step 1: Color-coding the recursion

• Look for the base case(s) of the function. Place a red box around them.
• Look for any return statements where we return a non-function. Place a
green box around them.

• Inside the recursive calls, place a yellow box around any variables that are
updated.

*Accumulator: acc stores the
product of nums seen so far.
def fact(n, acc):
if (n == 0):
return acc

else:
return fact(n – 1, acc * n)

Syntax 4.1 while Statement

Step 2: Initializing the local variables

Move all “accumulator” variables into the body of the function
as local variables.
Accumulator variables come with an accumulator statement, which
should be copied to above their initialization.
Using the accumulator statement, deduce a sensible starting value.

def fact(n):
acc stores the product of
nums seen so far.
acc = 1

*Accumulator: acc stores the
product of nums seen so far.
def fact(n, acc):
if (n == 0):
return acc

else:
return fact(n – 1, acc * n)

Execution of the Loop

Step 3: Designing the condition

Write the “while” keyword below the local variables.
Negate your red-boxed base case using “not”.

def fact(n, acc):
if (n == 0):
return acc;

else:
return fact(n – 1, acc * n)

def fact(n):
acc stores the product of
numbers seen so far.
acc = 1

while not (n == 0):
…

*Accumulator: acc stores the
product of nums seen so far.

while Loop Examples (1)

Step 4: Designing the body

Careful! The order of update statements is significant!
def fact(n):
acc stores the product of
nums seen so far.
acc = 1
while not (n == 0):
acc = acc * n
n = n - 1

def fact(n):
acc stores the product of
nums seen so far.
acc = 1
while not (n == 0):
n = n - 1
acc = acc * n

Iteration # not (n == 0) n acc

0 True 5 1

1 True 4 5

2 True 3 20

3 True 2 60

4 True 1 120

5 False 0 120

Iteration # not (n == 0) n acc

0 True 5 1

1 True 4 4

2 True 3 12

3 True 2 36

4 True 1 72

5 False 0 72

Finding the First Match

§Initialize boolean sentinel to false

§Initialize position counter to 0

§First char in String

§Use a compound conditional in loop

boolean found = false;
char ch;
int position = 0;
while (!found &&

position < str.length())
{

ch = str.charAt(position);
if (Character.isLowerCase(ch))
{

found = true;
}
else { position++; }

}

Step 5: Returning the value(s)

This is the simplest step!
In the recursive fact function, once we hit the base case, we return acc.
In the loop version, we return acc outside the loop.

def fact(n, acc):
if (n == 0):
return acc;

else:
return fact(n – 1, acc * n)

def fact(n):
acc stores the product of
nums seen so far.
acc = 1
while not (n == 0):
acc = acc * n
n = n – 1

return acc

*Accumulator: acc stores the
product of nums seen so far.

When To Use a for Loop?

§Yes, a while loop can do everything a for loop can do

§Programmers like it because it is concise

§Initialization

§Condition

§Update

§All on one line!

Figure 4. (Left) Experimental Group Slide Samples, (Right) Control
Group Slide Samples

https://citl.indiana.edu/news/feature/celebration-of-teaching-2024.html Indiana University Celebration of Teaching 2024, Bloomington, Indiana

https://citl.indiana.edu/news/feature/celebration-of-teaching-2024.html

